Las Capacidades dinámicas y la orientación emprendedora: fuente de innovación y rentabilidad en la Pyme Mexicana
The Dynamic Capabilities and the Entrepreneurial Orientation: Source of Innovation and Profitability in the Mexican SME
Luis Enrique Valdez-Juárez PhD. 1
Profesor investigador, Facultad de Ciencias Económicas y Administrativas, Instituto Tecnológico de Sonora, México
E-mail: levaldez@itson.edu.mx
ORCID: https://orcid.org/0000-0002-3754-4349
Elva Alicia Ramos-Escobar MBA2
Profesor investigador, Facultad de Ciencias Económicas y Administrativas, Instituto Tecnológico de Sonora, México
E-mail: elba.ramos@itson.edu.mx
ORCID: https://orcid.org/0000-0002-0886-890X
Edith Patricia Borboa-Álvarez3 PhD.
Profesor investigador, Facultad de Ciencias Económicas y Adminsitativas, Instituto Tecnológico de Sonora, México
E-mail: edith.borboa@itson.edu.mx
ORCID: https://orcid.org/0000-0002-8533-6712
Vol 3, N° 1 Enero - junio 2019 pp. 49-66
DOI: https://doi.org/10.26784/sbir.v3i1.158
E-ISSN: 2531-0046
Recibido: 2018-08-04
Aprobado: 2018-11-29
Resumen
En tiempos modernos la competitividad es un desafío y oportunidad para las organizaciones. La globalización de los mercados y la introducción de las nuevas tecnologías en los nuevos modelos de negocios, las grandes empresas, y más las Pymes, requieren de estrategias que las impulsen hacia el fortalecimiento de su competitividad y el aumento de la rentabilidad. Para ello, las Pymes están incorporando acciones que se derivan de las capacidades dinámicas, entre las que se destacan la orientación hacia el emprendimiento, el aprendizaje organizacional, la I+D, y las estrategias de mercado. El objetivo principal es analizar si las capacidades cinámicas y la orientación emprendedora, tienen influencia sobre las actividades de innovación y la Rentabilidad que se manifiesta en la Pyme. El estudio se focaliza en una muestra de 1.012 Pymes de la región Noroeste de México; la recolección de los datos se realizó a través de una encuesta estructurada dirigida al gerente de la empresa durante el periodo de septiembre a diciembre del año 2016. La técnica estadística basada en el análisis de la varianza a través del Método de Ecuaciones Estructurales (SEM) con apoyo de Partial Least Square (PLS), fue utilizada para la comprobación de las hipótesis. Los resultados revelan que las capacidades dinámicas tienen una fuerte influencia sobre las variables: orientación emprendedora, la actividad innovadora y la rentabilidad de la Pyme. Además, encontramos que la orientación emprendedora y las Actividades de Innovación influyen de forma significativa en la rentabilidad de la Pyme. La investigación contribuye al desarrollo de la literatura de las capacidades dinámicas y de la orientación emprendedora.
Palabras clave: Capacidades Dinámicas (CD), Orientación Emprendedora (OE), Aprendizaje Organizacional (AO), Innovación, Rentabilidad y Pequeñas y Medianas Empresas (Pymes).
Abstract
In modern times, competitiveness is a challenge and opportunity for organizations. The globalization of markets and the introduction of new technologies in new business models, large companies and especiall SMEs, require strategies that encourage them to strengthen their competitiveness and increase profitability. For this, SMEs are incorporating actions derived from the dynamic capabilities, among which the orientation towards entrepreneurship, organizational learning, R&D, and market strategies stand out. The main objective is to analyze if, the dynamic capabilities and the entrepreneurial orientation, have influence on the activities of innovation and the profitability that is manifested in the SME. The study focuses on a sample of 1,012 SMEs from the Northwest region of Mexico; the data collection was made through a structured survey directed to the company manager during the period from September to December 2016. The statistical technique based on the analysis of variance through the Structural Equation Method (SEM) with the support of Partial Least Square (PLS), it was used to test hypotheses. The results reveal that the dynamic capabilities have a strong influence on the variables: entrepreneurial orientation, innovative activity and the profitability of the SME. In addition, we found that entrepreneurial orientation and Innovation activities significantly influence the profitability of SMEs. The research contributes to the development of the literature of the dynamic capabilities and of the entrepreneurial orientation.
Keywords: Dynamic Capabilities (DC), Entrepreneurial Orientation (EO), Organizational Learning (OL), Innovation, Profitability and Small and Medium Enterprises (SMEs).
1. Introducción
En la actualidad las organizaciones de diferentes tamaños y regiones, están direccionadas hacia la supervivencia en mercados globales. Para ello, requieren de la adopción y ejecución de sus capacidades dinámicas como: el enfoque en el emprendimiento, las estrategias basadas en la creatividad y la incorporación de la innovación (Newey & Zahra, 2009; Teece, 2016). Dentro de las capacidades de mayor impacto en la empresa se encuentra el emprendimiento y el cual ha sido uno de los temas más estudiados en las últimas tres décadas, principalmente por los expertos en el área de la Administración de Empresas y de la Psicología (Zahra & Wright, 2011). Estos estudios han tenido la firme intención de conocer los impulsos emprendedores, los comportamientos del emprendedor y el espíritu empresarial (Covin & Lumpkin, 2011). Siendo el comportamiento emprendedor un punto medular en la gestión empresarial y en el logro de ventajas competitivas sostenidas (Marvel, Davis, & Sproul, 2016). Para tal efecto las empresas con enfoque emprendedor hacen uso de sus capacidades para transformar los recursos y aprovecharlos al máximo en las nuevas oportunidades de los mercados globales (Jantunen, Ellonen, & Johansson, 2012). Además del emprendimiento, las empresas están en una constante búsqueda por descubrir sus capacidades y en canalizar los recursos para la creación de un valor superior en sus bienes y servicios hacia sus grupos de interés (Newey & Zahra, 2009). Esta corriente teórica es conocida como las Capacidades Dinámicas y es una evolución de la teoría de los Recursos y Capacidades, y de la teoría de la Ventaja Competitiva (Barney, Wright, & Ketchen, 2001; Porter & Kramer, 2011).
La práctica y el fundamento de esta teoría permite a las empresas escalar hacia un nivel superior, particularmente en sus capacidades de emprendimiento, en el incremento de las redes de colaboración, en la mejora en la capacidad de innovación, en la inversión en investigación y desarrollo (I+D), en la mejora del activo intangible como el conocimiento (interno y externo), en el aumento del aprendizaje organizacional y el entendimiento del dinamismo del mercado (Teece, 2007; Zahra, Newey, & Li, 2014).
Todo ello con la intención de permanecer en mercados altamente competitivos por tiempos prolongados de forma sostenible (Andreeva & Ritala, 2016; Teece, 2010). Sin embargo, en las empresas denominadas Pymes (Pequeñas y medianas empresas) estos logros son difíciles de alcanzar. Debido principalmente a la falta de infraestructura tecnológica, falta de capacidad económica y financiera, escaso capital intelectual, poca inversión en invenciones y patentes, falta de interés por la innovación, poco apoyo en la obtención de subvenciones del gobierno, la escasa capacitación emprendedora y al enfoque de los resultados a corto plazo (Kuckertz & Wagner, 2010; McKeever, Jack, & Anderson, 2015). En la revisión de la literatura y estudios empíricos hemos detectado que en su mayoría la orientación emprendedora relacionada con las capacidades dinámicas se focaliza en las grandes compañías y pocos analizan las empresas de menor magnitud (Teece, 2016; Zahra, Sapienza, & Davidsson, 2006). Por ello, además de contribuir con el desarrollo de la literatura de las capacidades dinámicas, el estudio cobra una importante relevancia debido al análisis de empresas de menor magnitud (Pymes) en un país en vías de desarrollo. Por tal efecto, el propósito de este artículo es analizar cómo las capacidades dinámicas y la orientación emprendedora influyen en las actividades de innovación y en los resultados financieros de las Pymes. Las preguntas de investigación elaboradas en el trabajo son:
1. ¿Las capacidades dinámicas ejercen influencia significativa sobre la orientación emprendedora, la capacidad de innovación y en la rentabilidad financiera de la Pyme?
2. ¿La orientación emprendedora ejerce efectos significativos sobre las actividades de innovación y sobre la rentabilidad financiera de la Pyme?
3. ¿La capacidad de innovación influye en los resultados financieros de la Pyme?
El trabajo está estructurado en una primera parte por la revisión de la literatura y estudios empíricos. En la segunda sección se analiza la metodología y la medida de las variables en estudio y en la tercera sección se presenta y analizan los resultados para finalmente emitir las conclusiones y discusiones.
2. Revisión de la literatura y desarrollo de hipótesis
En esta sección se analizan las principales corrientes teóricas y una revisión de la literatura relacionada a las capacidades dinámicas y de la orientación emprendedora, mismas que dan origen al desarrollo de las hipótesis construidas en el modelo teórico propuesto el cual se puede observar en la Figura 1.
Figura 1. Modelo teórico de la investigación
Fuente: elaboración propia.
2.1. Las Capacidades dinámicas en las Pymes
La teoría de las capacidades dinámicas ha sido un tema debatido por diferentes autores en el campo de la administración de empresas a lo largo de más de tres décadas (Barney et al., 2001; Teece, 2007, 2016; Teece, Pisano, & Shuen, 1997; Zahra et al., 2006). Esto debido a los resultados y a los alcances que genera en las organizaciones de diferentes tamaños, incluyendo a las pequeñas empresas (Teece, 2007). Esta teoría es entendida como la capacidad organizacional de las empresas para transformar los recursos actuales en capacidades de nivel superior (Eisenhardt & Martin, 2000; Teece, 2007). Estas capacidades inciden directamente en resultados tales como procesos internos, la generación de nuevos productos, en la toma de decisiones estratégicas enfocadas en el posicionamiento de mercados altamente competidos, en la gestión del conocimiento, el aprendizaje organizacional y en el logro de una rentabilidad financiera sostenida (Andreeva & Ritala, 2016; Guesalaga, Gabrielsson, Rogers, Ryals, & Marcos Cuevas, 2018). En definitiva la teoría de las capacidades dinámicas ha sido una corriente estratégica que ha venido a revolucionar la intensidad emprendedora, el fomento en las actividades de innovación, el perfeccionamiento del aprendizaje organizacional y ha sido un factor clave en el incremento en los resultados de rentabilidad sostenida. Anteriormente, en la teoría basada en los recursos (RBV) y de la ventaja competitiva, no se contemplaba la estrategia enfocada en elevar las capacidades y obtener rendimientos económicos y financieros por periodos de tiempo prolongados (Barney, Ketchen, & Wright, 2011; Porter & Kramer, 2011). En tiempos recientes la teoría de las capacidades dinámicas, es de las más utilizadas en los estudios cuantitativos y ha sido plataforma para el fortalecimiento de otras corrientes relacionadas al entorno de las organizaciones.
2.2. Las Capacidades dinámicas y la Orientación emprendedora en la innovación y en la rentabilidad
La literatura ha expuesto que las empresas de diferentes tamaños deben y tienen que cambiar sus modelos de negocios y sus procesos con el fin de sobrevivir en escenarios plagados de adversarios altamente creativos y con clientes muy exigentes (Hogan & Coote, 2014; Teece, 2016; Zahra & Wright, 2011). Estos nuevos retos han permitido a las organizaciones emprendedoras e innovadoras centrarse en estas exigencias y lograr alcanzar mejores resultados económicos (Inan & Bititci, 2015; Teece, 2016; Zahra et al., 2006). Algunos estudiosos, como los desarrollados por McKelvie y Davidsson (2009) y Newey y Zahra (2009), han demostrado que las variables en estudio tienen una intrínseca relación en el seno de la empresa. Además, han concluido que las empresas de nueva creación requieren de una mayor administración de sus flujos del conocimiento y de la gestión de las capacidades de sus recursos humanos y tecnológicos. Esto permite a la organización centrarse en ideas creativas e innovadoras que las impulsa a mejorar sus cuotas de mercado, ganar más clientes y obtener más utilidades económicas (Teece, 2016; Zahra, 2008). Estudios más recientes como el de Müller, Buliga, y Voigt (2018) y de Ibarra, Ganzarain, y Igartua (2018), han expuesto que las estrategias de las Pymes, han estado en evolución en los últimos cinco años. En este lapso las organizaciones emprendedoras e innovadoras han desarrollado acciones que se centran en las capacidades tecnológicas, en la proactividad hacia el emprendimiento, en la capacidad para la construcción de redes colaborativas del conocimiento (aprendizaje colectivo) y en las acciones que incluyen la mejora de los procesos de automatización para mejorar sus productos e incrementar las cadenas de valor (Brink, 2018; Teece, 2016). Todo ello ha permitido resultados incalculables, destacándose: la mejora de la imagen empresarial, una mayor actividad innovadora, la transferencia del conocimiento individual al colectivo, la satisfacción de los clientes y el incremento de la rentabilidad financiera del negocio (Müller et al., 2018; Teece, 2016; Zahra, Zheng, & Yu, 2017). Del contexto anterior, se desprenden los siguientes planteamientos hipotéticos:
H1: A mayor desarrollo de las capacidades dinámicas, mayor orientación emprendedora en la Pyme.
H2: A mayor desarrollo de las capacidades dinámicas, mayor actividad innovadora en la Pyme.
H3: A mayor desarrollo de las capacidades dinámicas, mayor rentabilidad en la Pyme.
2.3. La orientación emprendedora en la innovación y en la rentabilidad
Desde la teoría de las capacidades dinámicas, la orientación emprendedora y la innovación, han sido estrategias diferenciadoras para la mayoría de las organizaciones a lo largo de todos los continentes (Teece, 2016). La literatura ha expuesto en las últimas tres décadas que las empresas que están orientadas hacia el mercado y con comportamientos hacia el emprendimiento, logran desarrollar mayores actividades de innovación y se consolidan con mayor rapidez en los ambientes turbulentos del mercado actual (Teece, 2007; Zahra & Nambisan, 2012). Existen algunos estudios en los que se han desarrollado modelos de emprendimiento con el fin de incentivar la creatividad y la innovación empresarial. Estos modelos se basan en la capacitación continua del empresario, en la consolidación de redes internas y externas, las cuales dan soporte técnico y financiero para permanecer más tiempo en los mercados competitivos (GEM, 2017; Kerr, 2013; Zahra & Wright, 2011). Estudios más recientes han concluido que existe una fuerte relación entre la intensidad y orientación emprendedora y la innovación en la Pyme. Además, informan que la orientación emprendedora forma parte de las capacidades dinámicas de la empresa y consecuentemente genera ideas nuevas, y la innovación en los productos y en los procesos internos (Cui, Fan, Guo, & Fan, 2018). Estudios como el de Martin y Javalgi (2016) y de Poole (2018), en el contexto de Pymes en economías emergentes, han explicado que este tipo de empresas tienen una mayor limitación para generar innovación y más aún para mantener rendimientos financieros sostenidos. Esto se debe principalmente a las políticas del gobierno y la falta de apoyos para la capacitación y asesoría especializada. Sin embargo, la Pyme genera un gran número de empleos en la región, luchan constantemente por mantener a sus clientes actuales, están adoptando nuevas tecnologías para mejorar sus productos y están en la búsqueda constante de incrementar sus ventas. Del contexto anterior se plantean las siguientes hipótesis:
H4: A mayor orientación emprendedora, mayor actividad innovadora de la Pyme.
H5: A mayor orientación emprendedora, mayor rentabilidad de la Pyme.
H6: A mayor actividad de innovación, mayor rentabilidad de la Pyme.
3. Metodología
La estructura de la muestra está fundamenta en los principios del muestreo estratificado para poblaciones finitas. La población está conformada por Pymes del sector industrial (manufactura y agroindustria) y de servicios (telecomunicaciones e inmobiliarias) establecidas en el Noroeste de México, y estas fueron segmentadas de acuerdo con el criterio de actividad. El número de empresas en cada uno de los estratos construidos se ha obtenido a partir de la información del Censo Económico más reciente elaborado por el Instituto Nacional de Estadística y Geografía (INEGI, 2014). El tamaño muestral fue determinado para lograr que el margen de error máximo para la estimación de una proporción (frecuencia relativa de respuesta en un ítem específico de una cuestión) fuese inferior a 0.03 puntos con un nivel de confianza del 95%. La técnica para la recolección de la información fue a través de una entrevista (cuestionario) personal dirigida al gerente de la Pyme. El trabajo de campo para la recolección de los datos se realizó durante los meses de septiembre a diciembre del año 2016. Finalmente se logró obtener una muestra de 1012 empresas, el 47.7 % pertenece al sector servicios, el 29.1% al sector comercio y el 23.2% al sector de la industria. La composición y características de la muestra se pueden apreciar en la tabla 1.
Fuente: Elaboración propia. PE=Pequeña Empresa (4 a 50 empleados), ME=Mediana Empresa (51 a 585 empleados).
3.2 Medida de las variables
Capacidades Dinámicas. Para la medición de esta variable se han estudiado las principales aportaciones de la teoría de las capacidades dinámicas como un detonador del desarrollo emprendedor, de la innovación y de sostenibilidad financiera (Teece, 2007). Derivado de esta revisión teórica y empírica, se ha pedido a los gerentes de las Pymes que respondan a las preguntas medidas en una escala tipo Likert de 5 puntos (1=total desacuerdo, 5=total acuerdo). Esta variable se ha dividido en: (1) Investigación y Desarrollo (I+D) medido con 3 preguntas estructuradas tomando de referencia los estudios de Autant-Bernard, Chalaye, Manca, Moreno, y Suriñach (2010) y de Teece (2010), (2) Aprendizaje Organizacional, medida con 3 preguntas desarrolladas en base a las investigaciones de Serenko, Bontis, y Hardie (2007) y de Zahra, Zheng, y Yu (2017), y (3) Estrategias de Mercado, medida con 3 preguntas con referencia a los estudios de Hillary (2004) y de Teece (2016), ver tabla 2.
Tabla 2. Consistencia interna y validez convergente: constructo formativo (segundo orden)
Fuente: Elaboración propia. VIF (Factor de Inflación de la Varianza). Además se presentan los nive-les de significancia de acuerdo a los valores de: *, **, *** indicando el nivel de significancia al 10% al 5% y al 1% respectivamente.
Orientación emprendedora. Para la medición de esta variable se han estudiado las principales teorías que abordan el comportamiento emprendedor y la orientación hacia el emprendimiento como medios para incrementar la innovación y la rentabilidad (McMullen & Shepherd, 2006; S. A. Zahra & Nambisan, 2012). Derivado de esta revisión teórica y empírica, se ha pedido a los gerentes de las Pymes que respondan a las preguntas medidas en una escala tipo Likert de 5 puntos (1=total desacuerdo, 5=total acuerdo). Esta variable se ha dividido en: (1) Empatía, medido con 3 preguntas estructuradas tomando de referencia los estudios de Matsuno, Mentzer, y Özsomer (2002) y de Zahra (2007), y (2) Actividades de proactividad, medida con 3 preguntas desarrolladas en base a las investigaciones de Lumpkin, Cogliser, y Schneider (2009) y Teece (2016), ver tabla 3.
Tabla 3. Consistencia interna y validez convergente por constructo (primer orden)
Fuente: Elaboración propia.
Nota: CF=Carga factorial, FC=Fiabilidad Compuesta, AC=Alfa de Cronbach. Además se presentan los niveles de
significancia de acuerdo a los valores de: *, **, *** indicando el nivel de significancia al 10% al 5% y al 1% respectivamente.
Actividad Innovadora. Esta variable fue medida en base a los modelos de la OECD (2005) y Teece (2009). El cuestionario recoge respuestas de los gerentes de la Pyme sobre el grado de importancia de las actividades innovadoras que ha desarrollado la empresa en los últimos dos años. Para ello se utiliza una escala (tipo Likert de 5 puntos, con 1=nada importante y 5=muy importante). La medición de esta variable está compuesta por 5 preguntas, mismas que se pueden observar en la tabla 4.
Tabla 4. Consistencia interna y validez convergente por constructo (primer orden)
Fuente: Elaboración propia.
Nota: CF=Carga factorial, FC=Fiabilidad Compuesta, AC=Alfa de Cronbach. Además se presentan los niveles de significancia de acuerdo a los valores de: *, **, *** indicando el nivel de significancia al 10% al 5% y al 1% respectivamente.
Rentabilidad. Históricamente esta variable ha sido un proxy difícil de cuantificar con exactitud en las organizaciones, debido principalmente a su complejidad, naturaleza y a los recursos que se aplican en los procesos rutinarios esto se agrava más en la Pyme (OECD, 2017). En este estudio los gerentes respondieron a las preguntas para clasificar los resultados de competitividad de la Pyme en base los resultados de rentabilidad, utilizando una escala tipo Likert de 5 puntos con 1=pobre rendimiento en los 2 años previos y 5=alto rendimiento en los últimos 2 años. Esta variable fue medida con 3 preguntas elaboradas en base a los estudios de Quinn y Shapiro (1991) y Smith y Smith (2007), observar tabla 5.
Tabla 5. Consistencia interna y validez convergente por constructo (primer orden)
Fuente: Elaboración propia.
Nota: CF=Carga factorial, FC=Fiabilidad Compuesta, AC=Alfa de Cronbach.
Además se presentan los niveles de significancia de acuerdo a los valores de: *, **, *** indicando el nivel
de significancia al 10% al 5% y al 1% respectivamente.
Variables de control
Frecuentemente el tamaño estructural y antigüedad de la empresa son visualizadas como un factor determinante en la generación de rendimiento económico y financiero para las organizaciones (Penrose, 2009). El tamaño de la empresa, esta variable fue medida con el logaritmo natural del total de los empleados del año 2016 (la empresa con menos empleados fue de 4 y la de mayor número de empleados fue de 585, con una media de 20.42). La edad de la empresa, en la literatura y en estudios empíricos esta variable es utilizada en los modelos de investigación para analizar la influencia financiera y crecimiento económico que se genera en las organizaciones durante un periodo de tiempo determinado (Benitez-Amado & Walczuch, 2012) IS. La edad de la empresa determina el grado de consolidación y madurez dentro de un mercado, resultados que se explican a través de la teoría evolutiva (Nelson, 2009). Esta variable es medida en base al inicio de la operación y hasta las actividades actuales de las empresas (la empresa más joven tenía 1 año de vida y la de mayor antigüedad contaba con 85 años de creación, con una media de 10.38).
4. Resultados
Para el análisis de los resultados hemos utilizado el modelo de ecuaciones estructurales basado en la varianza a través de la observación de constructores e indicadores de tipo reflectivos y formativos. Esta técnica estadística se lleva a cabo a través de dos fases, en primera instancia se analiza el modelo de medida y posteriormente el modelo estructural (Henseler, Ringle, & Sarstedt, 2016). Este método ha sido utilizado en nuestra investigación debido principalmente a la adecuación del objetivo establecido en la investigación; así como a la naturaleza y a las características de las variables que hemos utilizado. Además, es una técnica que se enfoca en el análisis de estudios exploratorios, confirmatorios y de predicción (Joseph F. Hair, 2016; Henseler, Hubona, & Ray, 2016).
4.1. Modelo de medida
La variable de tipo formativa (Capacidades dinámicas) en modo B, fue evaluada a través del valor de los pesos de cada ítem y su significancia. Además, se analizó el valor de t y el valor del VIF (Factor de Inflación de la Varianza). Los resultados del análisis muestran que los valores de los pesos son significativos y que además el valor del VIF se encuentra por debajo de 5 como lo recomienda Hair, Jr., Sarstedt, Ringle y Gudergan (2017). Con ello se descarta la presencia de multicolinealidad entre los indicadores, esto se puede observar en la tabla 2.
Para evaluar el modelo de medida con variables de tipo reflectivo en modo A (Orientación emprendedora, Actividad innovadora y Rentabilidad), se analizó la fiabilidad compuesta de cada ítem, la consistencia interna de la escala y la validez convergente. Para medir la relación y fiabilidad individual de cada ítem, se recomienda una carga estandarizada del factor mayor a 0.707, (Carmines & Zeller, 1991; Chin & Dibbern, 2010; Roberts, Priest, & Traynor, 2006). Nuestros resultados se encuentran en un rango entre 0.715 y 0.922, por encima de 0.707. La fiabilidad compuesta muestra los valores que van desde de 0.874, hasta 0.931, con ello se cumple el requisito de que el indicador debe estar por encima de 0.80 para la investigación básica, según lo propuesto por Nunnally (1978) y Vandenberg y Lance (2000). El alfa de Cronbach se considera satisfactorio sobre 0.700 (Hair, Black, Babin, Anderson, & Tatham, 2006). Nuestros resultados muestran valores entre 0.827 y 0.890, demostrando una alta fiabilidad del constructo. La varianza media extraída (AVE) indica la cantidad media de la varianza explicada por los indicadores del constructo. Nuestros valores de AVE van desde 0.49 hasta 0.82. Estos resultados están cerca y por encima del umbral de 0.5, tal como lo propone Hair Jr, Black, Babin, Anderson, y Tatham (2010). Por último, se comprobó la validez discriminante de las construcciones en el modelo mediante el análisis de la raíz cuadrada del AVE. Los resultados (diagonal) del AVE vertical y horizontal están por debajo de la correlación entre los constructos. Además, se muestran las correlaciones de los constructos del modelo. Esta prueba no detecta ninguna anomalía (ver tabla 6 y 7). Nuestros resultados proporcionan una adecuada validez y fiabilidad (convergente y discriminante).
Tabla 6. Validez discriminante del modelo teórico
Fuente: Elaboración propia.
Nota: AVE: varianza media extraída, CD: Capacidades Dinámicas, OE: Orientación Emprendedora, AI: Actividad
Innovadora, RENT: Rentabilidad
Tabla 7. Matriz de correlaciones de los constructos
Fuente: Elaboración propia.
Nota: CD: Capacidades Dinámicas, OE: Orientación Emprendedora, AI: Actividad Innovadora, RENT: Rentabilidad
4.2 Modelo estructural
La tabla 8 muestra los resultados de la estimación con PLS. Encontramos soporte empírico para todas las hipótesis estructuradas en el modelo. Los resultados de las hipótesis: H1y H2, presentan efectos significativos y positivos. Esto demuestra que las Pymes que ejecutan eficazmente sus capacidades dinámicas logran un mayor enfoque en las actividades de emprendimiento y en el aprendizaje organizacional, de acuerdo con el valor de beta de 0.696*** y 0.280***. La H3, informa que la CD muestra un efecto significativo pero negativo sobre el nivel rentabilidad de la Pyme, indicando que cuando no se tiene un enfoque en las CD, el nivel de rentabilidad disminuye, de acuerdo con el valor de beta de -0.262***. La H4 y H5, han demostrado que la Orientación emprendedora de las Pymes contribuye en forma significativa y positiva sobre las actividades de innovación y sobre los resultados de rentabilidad financiera, de acuerdo con los valores de beta 0.425*** y 0.274***. Además, hemos descubierto que la H6, presenta efectos significativos y positivos. Esto demuestra que las empresas que desarrollan mayores actividades innovadoras logran una mayor rentabilidad, de acuerdo con el valor de beta 0.192***. Por último, hemos examinado el efecto de las variables de control: la edad y el tamaño de la empresa sobre el rendimiento. Los resultados indican que estas variables tienen influencia significativa y positiva sobre la rentabilidad en la Pyme de acuerdo con los valores de: (β=0.205***) y (β=0.192***).
Tabla 8. Resultados de la prueba de hipótesis
Fuente: Elaboración propia.
CD: Capacidades Dinámicas, OE: Orientación Emprendedora, AI: Actividad Innovadora, RENT: Rentabi-lidad *: p < 0.1,
**: p < 0.05, ***: p < 0.01
Para evaluar el ajuste del modelo propuesto con las técnicas SEM que se basan en la covarianza, en PLS aún no están desarrolladas en su totalidad y solo es posible estimar estas medidas en base a: 1) el valor de los coeficientes de trayectoria, 2) el análisis de (R2) y 3) los valores de (F2) los cuales son medidas individuales significativas para explicar la capacidad de predicción del modelo estructural (Chin & Dibbern, 2010; Schuberth, Henseler, & Dijkstra, 2018). Los coeficientes de trayectoria alrededor de 0.2 son considerados económicamente significativos (Benitez, Castillo, Llorens, & Braojos, 2018; Roldán & Cepeda, 2016). Nuestros coeficientes del modelo son de 0.192*** y 0.696***. Para el análisis de la varianza explicada y la calidad de predicción del modelo a través de (R2), se toman las siguientes escalas de medición. Los valores de 0.1, 0.25 y 0.36 son efectos pequeños, medianos y grandes (Wetzels et al., 2009). Los resultados del modelo a través de R2, son para la Orientación Emprendedora de 0.483, para las Actividades de Innovación de 0.424 y un valor de 0.145 para la Rentabilidad, indicando un alto poder explicativo del modelo. El valor (F2) mide y proporciona el tamaño del efecto introducido en el modelo. Los valores de F2, de 0.02, 0.15 y 0.35 indican efecto débil, medio o grande (Leal-Rodríguez, Ariza-Montes, Roldán, & Leal-Millán, 2014). El análisis de F2, muestra los resultados de las relaciones clave del modelo con valores de 0.023, 0.036,0.037, 0.071 y 0.162, valores que superan los parámetros preestablecidos. Con ello, se demuestra que el modelo propuesto tiene una adecuada propiedad estructural y un adecuado nivel explicativo. El Test estadístico Q2 (cross-validated redundancy index) se utiliza para evaluar y probar la relevancia predictiva de los constructos endógenos en un modelo estructurado con variables de tipo reflectivas. El modelo fue evaluado a través de la técnica blindfolding (Hair, Ringle, & Sarstedt, 2013). Nuestro valor se encuentra en 0.335. Los valores mayores a (0) muestran una notable calidad predictiva (Hair et al., 2006), con ello se pone en evidencia la existencia de una notable calidad explicativa del modelo, esto se puede observar en las tablas 8 y 9.
Tabla 9. Calidad predictiva y ajuste del modelo
Fuente: Elaboración propia.
4.2.1 Análisis de mediación múltiple
La mediación múltiple secuencial fue utilizada en la investigación para probar el efecto de mediación. Esto implica en un primer instante estimar la importancia del efecto directo (c'). Posteriormente se efectúan dos pasos: 1) la determinación de los efectos indirectos (a1 x b1), (a2 x b2) y (a1 × a3 × b2) a través de la técnica de boostrapping con 5000 muestras, con cálculos de intervalos de 90% de confianza (Chin & Dibbern, 2010; Roldán & Cepeda, 2016); 2) El siguiente paso es determinar el tipo de efecto y la magnitud de los efectos indirectos en relación con el efecto total, con el fin de determinar la importancia o no de los efectos directos e indirectos y el tipo de mediación entre las variables (Hair, Sarstedt, Hopkins, & Kuppelwieser, 2014; Nitzl, Roldan, & Cepeda, 2016). Para tal efecto, se evalúa el índice de VAF (Variance Accounted For) (Carrión, Nitzl, & Roldán, 2017; Hair, 2016). Los autores Hair, Jr., Sarstedt, y Ringle (2017) y Carrión et al. (2017), indican que hay una mediación parcial competitiva cuando el valor de C´ y todas las demás relaciones tienen diferentes direcciones (positivas y negativas), y que además están por encima del 80%. En nuestra investigación existe una mediación parcial competitiva de acuerdo a los resultados obtenidos y al valor del VAF de 99.59%, esto significa que el efecto de mediación entre las Capacidades Dinámicas y la Rentabilidad está soportado por el efecto múltiple de la orientación emprendedora y por la actividad innovadora. En donde:
H1 = CD→Rentabilidad= c'
H2 = CD→OE→Rentabilidad= a1b1
H3 = CD→AI→Rentabilidad= a2b2
H4 = CD→OE→AI→Rentabilidad= a1a3b2
Los resultados del efecto de mediación múltiplese pueden observar en la figura 2 y tabla 10. Estos hallazgos muestran que las capacidades dinámicas tienen un efecto directo significativo en la rentabilidad (H1: c') de -0.137 ver tabla 3. Por otro lado, todos los efectos indirectos de la variable capacidades dinámicas son significativos. Esto significa que la H2, H3 y H4 han sido compatibles. Por lo tanto, la orientación emprendedora media positivamente la relación entre las capacidades dinámicas y la rentabilidad (H2: a1 × b1). Por otro lado, la actividad innovadora media el camino entre la orientación emprendedora y la rentabilidad (H3: a2 × b2). Finalmente, encontramos que las capacidades dinámicas tienen un efecto significativo sobre la rentabilidad (H4: a1 × a3 × b2). Los resultados muestran un efecto indirecto de 0.241 y un efecto significativo total de 0.104. Sin embargo, se observa que en este análisis de mediación los resultados afectan y disminuyen el nivel de rentabilidad de acuerdo al valor del R2 de 0.057.
Figura 2. Modelo de mediación múltiple
Fuente: Elaboración propia.
Tabla 10. Efectos de mediación múltiple
Fuente: Elaboración propia.
5. Conclusiones y discusión
En el marco de la teoría de las capacidades dinámicas y de la orientación emprendedora de las organizaciones innovadoras, se explican las principales conclusiones y discusiones del estudio enfocado en las Pymes del noroeste de México en un contexto plagado de competitividad y de incertidumbre en materia de comercio global. El estudio ha demostrado efectos significativos entre la variable de las capacidades dinámicas, la orientación emprendedora y la actividad innovadora, demostrando que las empresas enfocadas en el análisis del mercado, de los competidores, en el manejo adecuado de sus conocimientos y en la inversión en I+D, logran posicionarse en mercados competitivos (Andreeva & Ritala, 2016; Ko & Liu, 2017). Estos hallazgos se alinean con la teoría y con los principales estudios empíricos que analizan estos indicadores de desarrollo y crecimiento económico para las empresas. En cambio se ha observado que las capacidades dinámicas que se desarrollan en la Pyme, no están enfocadas en la generación de rentabilidad, esto se desvía de lo planteado por la teoría. Sin embargo, esta teoría ha expuesto que las pequeñas empresas tienen barreras y dificultades fuertes para generar rentabilidad sostenida, aumentar su cuota de mercado y aumentar sus ventas (Inan & Bititci, 2015; Teece, 2007, 2016). Con respecto a la orientación emprendedora, los hallazgos muestran que influye de manera significativa sobre las actividades de innovación y sobre la rentabilidad. Con ello, se comprueba que el enfoque hacia el emprendimiento eleva a un nivel superior los resultados de las Pymes, transformando la estructura organizacional en una empresa creativa, innovadora y con perspectivas hacia el incremento de su cuota de mercado, de las ventas y de las utilidades (Wilden, Devinney, & Dowling, 2016; Zahra et al., 2006; Zahra & Wright, 2011). Estos resultados están en la misma dirección con los postulados de la teoría de las capacidades dinámicas y la teoría de la orientación emprendedora. Además, nuestros hallazgos han revelado que cuando las Pymes logran desarrollar sus capacidades de innovación logran mejorar sus productos, sus procesos y su gestión, esto repercute directamente en los resultados financieros y económicos (Inan & Bititci, 2015; Naranjo-Valencia, Jiménez-Jiménez, & Sanz-Valle, 2016; Teece, 2010).
Estas aseveraciones se contemplan dentro de la teoría de las capacidades dinámicas. Finalmente, los resultados han puesto de manifiesto que las variables de control tamaño y edad de la empresa, son factores determinantes en la generación de rentabilidad en la Pyme, es decir, que a mayor tamaño (estructura organizacional) en función al número de empleados dotados de aprendizaje individual y colectivo, ayuda a la empresa a obtener mayores ventas, mayores ingresos y mejorar sus utilidades. Esto sucede también con la antigüedad de la empresa, es decir, que cuando la Pyme alcanza su madurez (promedio de 15 años), los resultados de rentabilidad tienen una mayor estabilidad y mejora su nivel de utilidad. Estas conclusiones están en la misma dirección con la teoría de las capacidades dinámicas y con la teoría económica evolutiva (Nelson, 2009; Teece, 2007). Estos resultados tienen implicaciones teóricas las cuáles ponen de manifiesto que las empresas tipo Pymes, tienen dificultades para adoptar modelos teóricos basados en capacidades dinámicas, esto debido a la falta de recursos financieros y una estructura organizacional con poca solidez. Lo que demuestra que teorías basadas en estos nuevos modelos funciona para empresas de mayor tamaño y el contexto práctico para las empresas pequeñas y medianas están desarticuladas con algunos supuestos teóricos.
Nuestros hallazgos arrojan las siguientes implicaciones prácticas para los dirigentes de las Pymes: 1) es recomendable que los directivos adopten nuevos modelos de negocio enfocados en la innovación y continuar con la orientación hacia el emprendimiento, invertir en la investigación y desarrollo (innovación) y en nuevas formas de mejorar el aprendizaje individual y transformarlo en aprendizaje colectivo, 2) Los gerentes deberán canalizar sus recursos y capacidades en la generación de ideas creativas e innovadoras para elevar su competitividad, 3) Los dueños y directivos de las Pymes deberían de enfocar sus recursos y capacidades (I+D, AO y EM) en el logro de mayor cuota de mercado, mayores ventas con el fin de incrementar sus rendimientos financieros, y 4) Es importante que las Pymes, trabajen en forma articulada con otras instituciones con el fin de elevar la competitividad sostenida y fomenten la explotación de nuevos conocimientos basados en redes de colaboración internas y externas.
El estudio contempla las siguientes limitaciones: 1) la recolección de la información se realizó a través de opiniones subjetivas con preguntas dirigidas al dueño y/o gerente de la Pyme, lo que puede ocasionar sesgo de información, 2) La muestra está enfocada y generalizada en Pymes del sector comercio, servicio e industrial, en un futuro se puede segmentar los sectores y realizar comparaciones en la misma región e inclusive en otras zonas del planeta, y 3) la última limitación que contempla el estudio se relaciona al análisis estadístico realizado el cual se basa en la varianza, en el futuro se puede contemplar el uso de técnicas que analicen la covarianza. Las líneas futuras de la investigación se centran en el estudio de las capacidades de la Pyme, con la incorporación de variables que sigan fortaleciendo al modelo propuesto con el fin de analizar en forma continua el comportamiento y desarrollo de este tipo de negocios. Entre las variables que se pueden adherir a la investigación es el análisis de la innovación abierta, el e-commerce, el m-commerce y la sosteni-bilidad. Además, es conveniente desarrollar investigaciones de tipo cross-cultural con otras regiones y países, pero además es importante realizar estudios de tipo longitudinal.
Nota: Investigación apoyada por la Secretaría de Educación Pública de México a través del PFCE 2018.
Notas de pie de página
1 Coordinador del cuerpo académico de gestión y desarrollo empresarial y Responsable de Posgrados.
2 Profesor investigador del cuerpo académico de gestión y desarrollo empresarial.
3 Profesor investigador del cuerpo académico de gestión y desarrollo empresarial.
Referencia
Andreeva, T., & Ritala, P. (2016). What are the sources of capability dynamism? Reconceptualizing dynamic capabilities from the perspective of organizational change. Baltic Journal of Management, 11(3), 238–259. https://doi.org/10.1108/BJM-02-2015-0049
Autant-Bernard, C., Chalaye, S., Manca, F., Moreno, R., & Suriñach, J. (2010). Measuring the adoption of innovation. A typology of EU countries based on the Innovation Survey. Innovation: The European Journal of Social Science Research, 23(3), 199–222. https://doi.org/10.1080/13511610.2010.547739
Barney, J. B., Ketchen, D. J., & Wright, M. (2011). The future of resource-based theory: Revitalization or decline? Journal of Management, 37(5), 1299–1315. https://doi.org/10.1177/0149206310391805
Barney, J., Wright, M., & Ketchen, D. J. (2001). The resource-based view of the firm: Ten years after 1991. Journal of Management, 27(6), 625–641. https://doi.org/10.1016/S0149-2063(01)00114-3
Benitez-Amado, J., & Walczuch, R. M. (2012). Information technology, the organizational capability of proactive corporate environmental strategy and firm performance: a resource-based analysis. European Journal of Information Systems, 21(6), 664–679. https://doi.org/10.1057/ejis.2012.14
Benitez, J., Castillo, A., Llorens, J., & Braojos, J. (2018). IT-enabled knowledge ambidexterity and innovation performance in small U.S. firms: The moderator role of social media capability. Information & Management, 55(1), 131–143. https://doi.org/10.1016/J.IM.2017.09.004
Brink, T. (2018). Organising of dynamic proximities enables robustness, innovation and growth: The longitudinal case of small and medium-sized enterprises (SMEs) in food producing firm networks. Industrial Marketing Management, 75, 66-79. https://doi.org/10.1016/J.INDMARMAN.2018.04.005
Carmines, E., & Zeller, R. (1991). Reliability and Validity Assessment.: Quantitative Aplications in the Social Sciences (pp.1-71): SAGE.
Carrión, G. C., Nitzl, C., & Roldán, J. L. (2017). Mediation Analyses in Partial Least Squares Structural Equation Modeling: Guidelines and Empirical Examples. In Partial Least Squares Path Modeling (pp. 173–195). Cham(indicar país): Springer International Publishing. https://doi.org/10.1007/978-3-319-64069-3_8
Chin, W. W., & Dibbern, J. (2010). Handbook of Partial Least Squares. Handbook of Partial Least Squares. https://doi.org/10.1007/978-3-540-32827-8
Covin, J. G., & Lumpkin, G. T. (2011). Entrepreneurial orientation theory and research: Reflections on a needed construct. Entrepreneurship theory and practice, 35(5), 855-872. https://doi.org/10.1111/j.1540-6520.2011.00482.x
Cui, L., Fan, D., Guo, F., & Fan, Y. (2018). Explicating the relationship of entrepreneurial orientation and firm performance: Underlying mechanisms in the context of an emerging market. Industrial Marketing Management, 71, 27–40. https://doi.org/10.1016/J.INDMARMAN.2017.11.003
Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: what are they? Strategic Management Journal, 21(10–11), 1105–1121. https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
GEM. (2017). GEM Global Entrepreneurship Monitor. Retrieved June 15, 2018, from https://www.gemconsortium.org/report
Guesalaga, R., Gabrielsson, M., Rogers, B., Ryals, L., & Marcos Cuevas, J. (2018). Which resources and capabilities underpin strategic key account management? Industrial Marketing Management, 75, 160-172. https://doi.org/10.1016/J.INDMARMAN.2018.05.006
Hair, J. F. et al. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Retrieved from https://books.google.es/books?id=Xn-LCwAAQBAJ&dq=SEM+VARIABLES+HENSELER+2017&lr=&hl=es&source=gbs_ navlinks_s
Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLSSEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128
Hair, Jr., J.P., Sarstedt, M., Ringle, C.M., & Gudergan, S.P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling. (SAGE, Ed.) (SAGE). Retrieved from https://books.google.com.mx/books?hl=es&lr=&id=-f1rDgA AQBAJ&oi=fnd&pg=PP1&dq=Hair+et+al+2016+VIF,+multicollinearity+PLS&ots=vX_5koFV9Z&sig=vtagongb9FZ RoAU49ZEochmq8AY#v=onepage&q&f=false
Hair Jr, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). SEM: An introduction Multivariate data analysis: A global perspective (pp. 629-686).
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6).
Hair, JF, Ringle, CM y Sarstedt, M. (2013). Modelo de ecuación estructural de mínimos cuadrados parciales: aplicaciones rigurosas, mejores resultados y mayor aceptación.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431. https://doi.org/10.1108/IMR-09-2014-0304
Hillary, R. (2004). Environmental management systems and the smaller enterprise. Journal of Cleaner Production, 12(6), 561–569. https://doi.org/10.1016/J.JCLEPRO.2003.08.006
Hogan, S. J., & Coote, L. V. (2014). Organizational culture, innovation, and performance: A test of Schein's model. Journal of Business Research, 67(8), 1609–1621. https://doi.org/10.1016/j.jbusres.2013.09.007
Ibarra, D., Ganzarain, J., & Igartua, J. I. (2018). Business model innovation through Industry 4.0: A review. Procedia Manufacturing, 22, 4–10. https://doi.org/10.1016/J.PROMFG.2018.03.002
Inan, G. G., & Bititci, U. S. (2015). Understanding Organizational Capabilities and Dynamic Capabilities in the Context of Micro Enterprises: A Research Agenda. Procedia Social and Behavioral Sciences, 210, 310–319. https://doi.org/10.1016/J.SBSPRO.2015.11.371
INEGI. (2014). National Institute of Geography and Statistics. Retrieved 05/11/2018, from http://www.inegi.org.mx/ est/contenidos/proyectos/ce/ce2014/default.aspx
Jantunen, A., Ellonen, HK, y Johansson, A. (2012). Más allá de las apariencias, ¿difieren realmente las capacidades dinámicas de las empresas innovadoras? European Management Journal , 30 (2), 141-155. https://doi.org/10.1016/j.emj.2011.10.005
Kerr, W. R. (2013). U.S. High-Skilled Immigration, Innovation, and Entrepreneurship: Empirical Approaches and Evidence. National Bureau of Economic Research.
Ko, W. W., & Liu, G. (2017). Environmental Strategy and Competitive Advantage: The Role of Smalland Medium-Sized enterprises' Dynamic Capabilities. Business Strategy and the Environment, 26(5), 584–596. https://doi.org/10.1002/bse.1938
Kuckertz, A., & Wagner, M. (2010). The influence of sustainability orientation on entrepreneurial intentions— Investigating the role of business experience.Journal of Business Venturing, 25(5), 524-539. https://doi.org/10.1016/j.jbusvent.2009.09.001
Leal-Rodríguez, A. L., Ariza-Montes, J. A., Roldán, J. L., & Leal-Millán, A. G. (2014). Absorptive capacity, innovation and cultural barriers: A conditional mediation model. Journal of Business Research, 67(5), 763-768. https://doi.org/10.1016/j.jbusres.2013.11.041
Lumpkin, G. T., Cogliser, C. C., & Schneider, D. R. (2009). Understanding and Measuring Autonomy: An Entrepreneurial Orientation Perspective. Entrepreneurship Theory and Practice, 33(1), 47–69. https://doi.org/10.1111/j.15406520.2008.00280.x
Martin, S. L., & Javalgi, R., & Raj, G. (2016). Entrepreneurial orientation, marketing capabilities and performance: The Moderating role of Competitive Intensity on Latin American International New Ventures. Journal of Business Research, 69(6), 2040–2051. https://doi.org/10.1016/j.jbusres.2015.10.149
Marvel, M. R., Davis, J. L., & Sproul, C. R. (2016). Human capital and entrepreneurship research: A critical review and future directions. Entrepreneurship Theory and Practice, 40(3), 599-626. https://doi.org/10.1111/etap.12136
Matsuno, K., Mentzer, J. T., & Özsomer, A. (2002). The Effects of Entrepreneurial Proclivity and Market Orientation on Business Performance. Journal of Marketing, 66(3), 18–32. https://doi.org/10.1509/jmkg.66.3.18.18507
McKeever, E., Jack, S., & Anderson, A. (2015). Embedded entrepreneurship in the creative re-construction of place. Journal of Business Venturing, 30(1), 50-65. https://doi.org/10.1016/j.jbusvent.2014.07.002
McKelvie, A., & Davidsson, P. (2009). From Resource Base to Dynamic Capabilities: an Investigation of New Firms. British Journal of Management, 20, S63–S80. https://doi.org/10.1111/j.1467-8551.2008.00613.x
McMullen, J. S., & Shepherd, D. A. (2006). Entrepreneurial Action And The Role Of Uncertainty In The Theory Of The Entrepreneur. Academy of Management Review, 31(1), 132–152. https://doi.org/10.5465/amr.2006.19379628
Müller, J. M., Buliga, O., & Voigt, K.-I. (2018). Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change, 132, 2–17. https://doi.org/10.1016/J.TECHFORE.2017.12.019
Naranjo-Valencia, J. C., Jiménez-Jiménez, D., & Sanz-Valle, R. (2016). Studying the links between organizational culture, innovation, and performance in Spanish companies. Revista Latinoamericana de Psicologia, 48(1), 30–41. https://doi.org/10.1016/j.rlp.2015.09.009
Nelson, R. R. (2009). An Evolutionary Theory of Economic Change. Harvard University Press. Retrieved from https://books.google.com.mx/books?id=6Kx7s_HXxrkC
Newey, L. R., & Zahra, S. A. (2009). The Evolving Firm: How Dynamic and Operating Capabilities Interact to Enable Entrepreneurship. British Journal of Management, 20(s1), S81–S100. https://doi.org/10.1111/j.1467-8551.2008.00614.x
Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modeling. Industrial Management & Data Systems, 116(9), 1849–1864. https://doi.org/10.1108/IMDS-07-2015-0302
Nunnally, J. (1978). Psychometric methods. New York, USA: McGraw-Hill
OECD. (2017). Small, medium, strong. Trends in SME performance and business conditions. Retrieved from https://books. google.es/s?id=OKpmtAEACAAJ&dq=OECD,+development+economics+employee+in+the+SMEs+2017&hl=es&s a=X&ved=0ahUKEwjy1YTXov3aAhVE6xQKHYrTCM0Q6AEITzAF
OECD. (2005). Organisation for Economic Co-operation and Development. Communities, S.O.E. The Measurement of Scientific and Technological Activities Oslo Manual Guidelines for Collecting and Interpreting Innovation Data, 3rd Edition: Guidelines for Collecting and Interpreting Innovation Data, 3rd Edition: OECD Publishing.
Penrose, E. T. (2009). The Theory of the Growth of the Firm. Oxford, UK: Oxford University Press. Retrieved from https://books.google.com.mx/books?id=zCAUDAAAQBAJ
Poole, D. L. (2018). Entrepreneurs, entrepreneurship and SMEs in developing economies: How subverting terminology sustains flawed policy. World Development Perspectives, 9, 35–42. https://doi.org/10.1016/J.WDP.2018.04.003
Porter, M. E., & Kramer, M. R. (2011). Creating shared value. Harvard Business Review, (February), 63–77. https://doi.org/10.1108/09600039410055963
Quinn, D. P., & Shapiro, R. Y. (1991). Economic growth strategies: The effects of ideological partisanship on interest rates and business taxation in the United States. American Journal of Political Science, 656-685. https://doi.org/ 10.2307/2111560
Roberts, P., Priest, H., & Traynor, M. (2006). Reliability and validity in research. Nursing standard, 20(44).
Roldán, J. L., & Cepeda, G. (2016). Modelos de Ecuaciones Estructurales basados en la Varianza: Partial Least Squares (PLS) para Investigadores en Ciencias Sociales. Universidad de Sevilla, España.
Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Partial least squares path modeling using ordinal categorical indicators. Quality & Quantity, 52(1), 9–35. https://doi.org/10.1007/s11135-016-0401-7
Serenko, A., Bontis, N., & Hardie, T. (2007). Organizational size and knowledge flow: a proposed theoretical link.
Journal of Intellectual Capital, 8(4), 610–627. https://doi.org/10.1108/14691930710830783
Smith, M. H., & Smith, D. (2007). Implementing strategically aligned performance measurement in small firms. International Journal of Production Economics, 106(2), 393-408. https://doi.org/10.1016/j.ijpe.2006.07.011
Teece, D. J. (2007). Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainabile) Enterprise Performance. Strategic Management Journal, 298(13), 1319–1350. https://doi.org/10.1002/smj.640
Teece, D. J. (2009). Dynamic capabilities and strategic management: Organizing for innovation and growth. Oxford University Press on Demand.
Teece, D. J. (2010). Business models, business strategy and innovation. Long Range Planning, 43(2–3), 172–194. https://doi.org/10.1016/j.lrp.2009.07.003
Teece, D. J. (2016). Dynamic capabilities and entrepreneurial management in large organizations: Toward a theory of the (entrepreneurial) firm. European Economic Review, 86, 202–216. https://doi.org/10.1016/J.EUROECOREV.2015.11.006
Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research.Organizational research methods, 3(1), 4-70. https://doi.org/10.1177/109442810031002
Wetzels, M., Odekerken-Schröder, G., y Van Oppen, C. (2009). Utilización del modelado de rutas PLS para evaluar modelos de construcción jerárquicos: directrices e ilustración empírica. MIS trimestral , 177-195.
Wilden, R., Devinney, T. M., & Dowling, G. R. (2016). The Architecture of Dynamic Capability Research Identifying the Building Blocks of a Configurational Approach. The Academy of Management Annals, 10(1), 997–1076. https://doi.org/10.1080/19416520.2016.1161966
Zahra, A. S., Sapienza, J. H., & Davidsson, P. (2006). Entrepreneurship and Dynamic Capabilities: A Review, Model and Research Agenda. Journal of Management Studies, 43(4), 917–955. https://doi.org/10.1111/j.1467-6486.2006.00616.x
Zahra, S. A. (2007). Contextualizing theory building in entrepreneurship research. Journal of Business Venturing, 22(3), 443–452. https://doi.org/10.1016/J.JBUSVENT.2006.04.007
Zahra, S. A. (2008). Being entrepreneurial and market driven: implications for company performance. Journal of Strategy and Management, 1(2), 125–142. https://doi.org/10.1108/17554250810926339
Zahra, S. A., & Nambisan, S. (2012). Entrepreneurship and strategic thinking in business ecosystems. Business Horizons, 55(3), 219–229. https://doi.org/10.1016/J.BUSHOR.2011.12.004
Zahra, S. A., Newey, L. R., & Li, Y. (2014). On the Frontiers: The Implications of Social Entrepreneurship for International Entrepreneurship. Entrepreneurship Theory and Practice, 38(1), 137–158. https://doi.org/10.1111/etap.12061
Zahra, S. A., & Wright, M. (2011). Entrepreneurship's Next Act. Academy of Management Perspectives, 25(4), 67–83. https://doi.org/10.5465/amp.2010.0149
Zahra, S. A., Zheng, C., & Yu, J. (2017). Learning advantages of newness: A reconceptualization and contingent framework. Journal of International Entrepreneurship, 16(1), 12–37. https://doi.org/10.1007/s10843-017-0202-7
How to quote this article? / ¿Cómo citar este artículo?
Valdez Juárez, L., Ramos Escobar, E., & Borboa Álvarez, E. (2019). Las Capacidades Dinámicas y la Orientación Emprendedora: Fuente de Innovación y Rentabilidad en la Pyme Mexicana. Small Business nternational Review, 3(1), 49-66. https://doi.org/10.26784/sbir.v3i1.158
Copyright © 2019 Luis Enrique Valdez-Juárez, Elva Alicia Ramos-Escobar y Edith Patricia Borboa-Álvarez
This publication is licensed under a Creative Commons Attribution-NonCommercialShareAlike 4.0 International License (CC BY-NC-SA 4.0)